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Coulomb interactions play a major role in determining the ther-
modynamics, structure, and dynamics of condensed-phase sys-
tems, but often present significant challenges. Computer sim-
ulations usually use periodic boundary conditions to minimize
corrections from finite cell boundaries but the long range of
the Coulomb interactions generates significant contributions from
distant periodic images of the simulation cell, usually calculated
by Ewald sum techniques. This can add significant overhead to
computer simulations and hampers the development of intu-
itive local pictures and simple analytic theory. In this paper, we
present a general framework based on local molecular field the-
ory to accurately determine the contributions from long-ranged
Coulomb interactions to the potential of mean force between
ionic or apolar hydrophobic solutes in dilute aqueous solutions
described by standard classical point charge water models. The
simplest approximation leads to a short solvent (SS) model, with
truncated solvent–solvent and solute–solvent Coulomb interac-
tions and long-ranged but screened Coulomb interactions only
between charged solutes. The SS model accurately describes the
interplay between strong short-ranged solute core interactions,
local hydrogen-bond configurations, and long-ranged dielectric
screening of distant charges, competing effects that are difficult
to capture in standard implicit solvent models.

Coulomb interactions | hydrophobic hydration and association | implicit
solvent model | ion correlations

Capturing the flexible multiscale nature of water interac-
tions in solvation and self-assembly processes presents many

conceptual and computational challenges. Hydrophobic interac-
tions, where apolar residues cluster together to minimize their
contacts with water, are a major driving force in protein folding
and the association of lipid molecules to form membranes, vesi-
cles, and micelles (1). Water can also form strong short-ranged
directional hydrogen bonds with polar molecules or residues and
build hydrogen-bond bridges between them. In addition to this
short-ranged physics involving the interplay between molecular
cores and solute charges on local hydrogen-bond configura-
tions, water dipoles screen Coulomb interactions between distant
charges, with important effects on the initial stages of pro-
tein folding, biomolecular assembly, and dielectric properties in
general.

Explicitly including water molecules in computer simulations
is the most reliable way to describe their variable effects on the
behavior of solutions. However, when modeling large and com-
plex solutes or biomolecules, this explicit solvent model becomes
computationally expensive, because of the large number of water
molecules required to solvate the large molecules and to mini-
mize interactions between periodic images. This is compounded
by the need to use special techniques like Ewald summation
(2–4) to accurately account for effects of long-ranged Coulomb
interactions in periodic simulation cells.

Coarse-grained implicit solvent models (5), where the sol-
vent degrees of freedom are formally integrated out, greatly
reduce the number of degrees of freedom and can significantly

improve computational efficiency for equilibrium properties.
However, an exact coarse-graining procedure generates effec-
tive many-body- and state-dependent interactions between the
solutes whose consequences are hard to determine in advance
and dynamical processes present further difficulties (5).

Many different models have been used to approximate these
effective interactions in simpler ways. Most implicit solvent mod-
els try to define a fixed boundary around the solutes such that
long-ranged interactions outside are screened by a dielectric
continuum and short-ranged interactions inside are approxi-
mated by effective few-body interactions with simple predeter-
mined functional forms (5–13). Well-known examples include
the generalized Born model for dielectric effects (6–9) and the
“solvent-accessible surface area model” for nonpolar effects (5,
7, 10, 11). Such models have been shown to qualitatively cap-
ture the behavior of the explicit solvent model in many cases
(14–19), but often fail when solute charges or configurational
changes strongly perturb the local solvent structure (15, 20–
25). For example, it is found that these models typically fail
to predict the length-scale dependence of hydrophobic inter-
actions (21) or predict the solvent-separated minimum of the
potential of mean force (PMF) between charged amino acid
side chains (22).

Recent work has shown that the accuracy of implicit solvent
models can be improved by using a more realistic solute–solvent
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boundary (26–28). For example, the variational implicit solvent
model (VISM) determines the position of a flexible solute–
solvent boundary by minimizing an approximate VISM solvation
free energy functional. It has been shown that the VISM can
describe the metastable hydration states and the dry–wet tran-
sition that occur during hydrophobic association (27). However,
the computational burden for implementing the VISM is non-
trivial, and there may be other competing short-ranged effects
of solute–solvent interactions not included in the assumed free
energy functional. For example, the standard VISM lacks the
atomic-scale detail needed to capture subtleties of ionic sol-
vation, such as the asymmetry of the solvation free energy
with respect to ion charge for cations and anions of the same
size (29).

In this paper, we generalize ideas used in a recent local
molecular field (LMF) treatment of solvent structure induced
by a fixed solute or by confining walls (30) and the associ-
ated free energy changes to develop a theory for the PMF
between mobile charged or hydrophobic molecular species in
dilute aqueous solutions. The theory here focuses on a par-
ticularly simple short solvent (SS) model Hamiltonian where
all solvent–solvent and solvent–solute Coulomb interactions are
truncated and effective screened solute–solute Coulomb interac-
tions are introduced only between charged solutes. The SS model
can be easily incorporated into standard simulation packages
and greatly reduces the computational overhead and possible
artifacts from standard lattice-sum treatments of long-ranged
Coulomb interactions in explicit solvent models while still per-
mitting an accurate molecular-scale description of the compli-
cated short-ranged physics that is difficult to capture in implicit
solvent models.

In particular, the computational cost of the traditional Ewald
algorithm naively scales with the number of charged sites as N 2,
and its most efficient implementations scale as N logN . While
the SS model does not alter these basic scaling forms, it drasti-
cally reduces the number of sites that have long-ranged Coulomb
interactions, such that N →NS�N , where NS is the number
of solute sites. Moreover, the solvent–solvent and solvent–solute
interactions, which dominate the computational cost of tra-
ditional biomolecular simulations, are purely short ranged in
the SS model and therefore scale linearly with the number of
solvent sites.

Our starting point is an exact statistical mechanics framework
based on the Yvon–Born–Green hierarchy (31) relating corre-
lation functions to intermolecular forces. LMF theory then sys-
tematically exploits the slowly varying nature of the long-ranged
tails in Coulomb [and sometimes Lennard-Jones (LJ)–type (32)]
intermolecular interactions in the Hamiltonian of the full sys-
tem of interest to define a simpler full mimic (FM) system
with Gaussian-truncated (GT) solvent–solvent Coulomb inter-
actions as detailed below and appropriately chosen effective or
renormalized solute–solute and solute–solvent interactions. The
renormalized interactions analytically incorporate the averaged
effects of the long-ranged tails and can be chosen by a self-
consistent solution of a simple mean-field–like LMF equation to
accurately reproduce relevant solute–solute and solute–solvent
correlation functions in the full system.

This allows us to use simulations and theory in the simpler
mimic system to determine many desired structural and thermo-
dynamic properties in the full system. The SS system takes this
truncation a step farther by using the GT representation of all
Coulomb interactions involving the solvent, such that all solvent–
solvent and solvent–solute Coulomb interactions are truncated,
with renormalized Coulomb tails only between charged solutes.

The solvent in the SS system falls into a broad class of trun-
cated or short water models, which accurately describe local
H-bonding and packing interactions but lack the proper long-
ranged electrostatics. Other short water models have been gener-

ated by reaction-field and other truncated electrostatic methods
(33–35), as well as by many machine-learning–based models of
water, which typically lack long-ranged interactions beyond the
length scale used to train the model (36–38). However, by using
simple mean-field–like LMF equations, one can systematically
incorporate longer-ranged correlations responsible for dielectric
phenomena into these short water models.

We anticipate that the SS model can serve as a useful general
alternative to explicit and implicit solvent models in describ-
ing the association and configurations of complex molecular
solutes and biopolymers in solution, especially in difficult cases
where competing short-ranged interactions and water’s flexibility
obscure a simple physical picture.

For example, it is known that the screened long-ranged
Coulomb interactions between biomolecules can dramatically
influence their binding rate (39), and with effective solute–solute
Coulomb interactions incorporated into the SS model, we expect
this behavior can be correctly captured. More generally, we
believe LMF theory presents a consistent theoretical framework
that can be further developed to yield simplified models per-
mitting more efficient biomolecular simulations while retaining
a high level of accuracy and molecular detail.

Theory
Thermodynamic cycles are used to relate properties in mimic sys-
tems to those in the full or target system in an LMF approach.
Here we first determine the PMF ωf

AB(r) for two spherically
symmetric charged ions of species A and B in a dilute solu-
tion in full solvent W. As schematically illustrated by the orange
arrow in Fig. 1, Top, this is given by the reversible work or free
energy change to move the infinitely separated solutes to a rela-
tive separation r or, equivalently, by the free energy difference of

Fig. 1. Thermodynamic cycles that relate the solute–solute PMFs to the
solvation free energy differences between the full system, the full mimic
system, and the short solvent system. In this example, two ions of species A
and B are dilutely solvated in water, denoted as W. In the full system all of
the electrostatic interactions are fully taken into account. In the full mimic
system the solvent–solvent electrostatic interaction is Gaussian truncated,
and effective solute–solvent and solute–solute interactions are introduced.
In the short solvent system both the solvent–solvent and solute–solvent elec-
trostatic interactions are Gaussian truncated, and effective interactions are
introduced only between solutes. ∆Ω̆f,fm

AB (r) and ∆Ω̆fm,ss
AB (r), represented by

green arrows, denote the grand solvation free energy difference between
systems with the same solute positions. ωf

AB(r), ωfm
AB(r), and ωss

AB(r), repre-
sented by orange arrows, denote the solute–solute PMF in the full, full
mimic, and short solvent systems, respectively.

1294 | www.pnas.org/cgi/doi/10.1073/pnas.1918981117 Gao et al.
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solvating the two solutes at separation r with respect to solvating
them at infinite separation:

ωf
AB(r) = Ωf

AB(r)−Ωf
AB(∞) = Ω̆f

AB(r)− Ω̆f
AB(∞). [1]

The intensive solvation free energy Ω̆f
AB(r) of the solute pair

with a fixed relative separation r in the full system (Fig. 1, Top
Left) is defined as

Ω̆f
AB(r)≡Ωf

AB(r)−Ωf , [2]

where Ωf
AB(r) is the (extensive) grand free energy of the full sys-

tem with A and B solutes at a fixed separation r and Ωf is the
grand free energy of bulk full water. When the solute separa-
tion tends to infinity, as in Fig. 1, Top Right, the solvation free
energy of the solute pair is simply the sum of the single-solute
free energies:

Ω̆f
AB(∞) = Ω̆f

A + Ω̆f
B. [3]

We suppose ωf
AB(r) is difficult to calculate in simulations using

full explicit water because of inefficient sampling of solute config-
urations in the dilute solution and overhead and possible artifacts
from conventional treatments of the long-ranged Coulomb inter-
actions. LMF approaches define simpler mimic systems with
truncated solvent–solvent Coulomb interactions and properly
renormalized solute interactions that can accurately approximate
this PMF, as schematically depicted in Fig. 1, Middle and Bot-
tom. The truncation arises from representing the basic Coulomb
interaction v(r)≡ 1/r between solvent charges as a sum of
short- and long-ranged components controlled by a smoothing
or truncation length σ,

v(r) =
erfc(r/σ)

r
+

erf(r/σ)

r
= v0(r) + v1(r), [4]

and ignoring the long-ranged component v1(r), as illustrated
in Fig. 2C.

The smoothing length σ is a consistency parameter chosen
using physical principles rather than a fitting parameter as used
in typical methods for treating long-ranged interactions. In par-
ticular, the approximations leading to the LMF equation from
the exact YBG hierarchy can be justified for any σ on the scale
of characteristic nearest-neighbor charge–charge correlations in
the system or larger (30, 31). For water, this corresponds to a
minimal value of σ≈ 0.3 nm, as shown in previous work, and here
we make a conservative choice of σ= 0.5 nm throughout.

The analogous PMF in the simple SS model is depicted in
Fig. 1, Bottom. Renormalized solutes are introduced with an
effective solute–solute pair interaction wss

AB(r) that is to be cho-
sen in principle so that the solute–solute PMFs in the full and SS
systems given by the orange arrows are equal: ωss

AB(r) =ωf
AB(r).

The open circles in Fig. 1, Bottom indicate a true “short sol-
vent” where both solvent–solute and solvent–solvent Coulomb
interactions are truncated.

When detailed information about solute–solvent pair corre-
lations in the full AB system is also of interest, we can use a
more general FM system where only solvent–solvent interac-
tions are truncated, as depicted in Fig. 1, Middle. In the FM
system both solute–solute and solute–solvent effective interac-
tions are chosen to generate correlation functions that accurately
match both the solute–solute and solute–solvent PMFs in the
full system. However, self-consistently determining both sets of
effective interactions and carrying out simulations in the FM
system are computationally more expensive than in the SS sys-
tem, and the SS model also has more direct connections to
implicit solvent models. In this paper we focus mainly on ana-
lytic and simulation results for dilute mobile solutes using the

A B

C

Fig. 2. Notation used in our derivation. (A) The coordinates for the solute
and solvent particles. Solute A is placed at the origin. Solute B is placed
at r. Coordinates of solvent W are denoted as r′, r′′, etc. The relative
displacement between depicted solvent sites is r′′− r′ and their displace-
ments relative to the two solutes are denoted as r′A, r′B, r′′A , r′′B , etc. (B)
The associated solvent charge distributions. The charges carried by the two
solutes are denoted as QA and QB, respectively. The ensemble-averaged
water charge density at r′ is denoted as ρq

AB(r′ | 0, r). (C) Separation of the
Coulomb interaction v(r) = 1/r into a short-ranged part v0(r) = erfc(r/σ)/r
and a long-ranged part v1(r) = erf(r/σ)/r. The value of σ controls the trun-
cation or smoothing length, which we choose to be 0.5 nm in this paper,
consistent with earlier work.

SS model, where simple and very accurate results can be con-
sistently derived exploiting only the slowly varying nature of the
Coulomb tails.

Vertical green arrows in Fig. 1 give the free energy differences
between the various solvent models with the two solutes fixed
at the same positions. The upper two green and orange arrows
define a thermodynamic cycle that connects the FM system to
the full system and a similar cycle in Fig. 1, Middle and Bottom
connects the SS system to the FM system. In particular, the upper
left green arrow, denoted as ∆Ω̆f,fm

AB (r), gives the solvation free
energy difference between the full and FM systems:

∆Ω̆f,fm
AB (r)≡ Ω̆f

AB(r)− Ω̆fm
AB(r). [5]

The other green arrows can be similarly defined.
Free energy differences represented by the orange and green

arrows in Fig. 1 can be naturally separated into a direct contri-
bution from the pair potential between the fixed AB solutes and
the remaining indirect part mediated by the solvent (and other
mobile solutes at finite dilution). This separation will prove espe-
cially useful in LMF theory, where we want to choose effective
pair interactions in the mimic systems to match target correlation
functions in the full system.

Thus the upper orange arrow ωf
AB(r) in Fig. 1 can be

written as
ωf
AB(r)≡wf

AB(r) + ω̄f
AB(r), [6]

where wf
AB(r) denotes the known direct AB pair interaction in

the full system and ω̄f
AB(r) denotes the indirect part of the PMF,

Gao et al. PNAS | January 21, 2020 | vol. 117 | no. 3 | 1295

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
1,

 2
02

1 



www.manaraa.com

indicated by the overbar symbol. Similarly, the solvation free
energy of Fig. 1, Top Left, Ω̆f

AB(r), can be written as

Ω̆f
AB(r)≡wf

AB(r) + Ω̄f
AB(r), [7]

where Ω̄f
AB(r) denotes the indirect contribution to the solvation

free energy.
Free energy differences as in Eq. 5 represented by green

arrows in Fig. 1 similarly separate. Thus the upper left green
arrow gives

∆Ω̆f,fm
AB (r)≡wf

AB(r)−wfm
AB(r) + ∆Ω̄f,fm

AB (r), [8]

where
∆Ω̄f,fm

AB (r)≡ Ω̄f
AB(r)− Ω̄fm

AB(r). [9]

As in Eq. 3, when r→∞, we have

∆Ω̆f,fm
AB (∞) = ∆Ω̄f,fm

AB (∞) = ∆Ω̄f,fm
A + ∆Ω̄f,fm

B , [10]

where ∆Ω̄f,fm
A is the difference between the solvation free

energies for a single A solute in the full and full mimic systems.
We can easily derive equations for the desired effective poten-

tials in each cycle in terms of these quantities. Effective solute–
solvent and solute–solute interactions in the FM system and only
solute–solute interactions in the simpler SS system are supposed
to be chosen such that all orange arrows in Fig. 1 are equal:

ωf
AB(r) =ωfm

AB(r) =ωss
AB(r). [11]

Because the net free energy change around any cycle is zero, this
equivalence implies that the right and left green arrows in Fig. 1
in each cycle are equal and independent of r :

∆Ω̆f,fm
AB (r) = ∆Ω̆f,fm

AB (∞) = ∆Ω̄f,fm
A + ∆Ω̄f,fm

B , [12]

∆Ω̆fm,ss
AB (r) = ∆Ω̆fm,ss

AB (∞) = ∆Ω̄fm,ss
A + ∆Ω̄fm,ss

B . [13]

Eq. 12 combined with Eqs. 8 and 10 gives us an exact expression
for the required AB interaction in the FM system:

wfm
AB(r) =wf

AB(r) + ∆Ω̄f,fm
AB (r)−∆Ω̄f,fm

A −∆Ω̄f,fm
B . [14]

A similar exact result for the SS model can be found by matching
the green arrows in the lower cycle in Fig. 1:

wss
AB(r) =wfm

AB(r) + ∆Ω̄fm,ss
AB (r)−∆Ω̄fm,ss

A −∆Ω̄fm,ss
B . [15]

Combining Eqs. 14 and 15, this can be rewritten as

wss
AB(r) =wf

AB(r) + ∆Ω̄f,fm
AB (r)−∆Ω̄f,fm

A −∆Ω̄f,fm
B

+ ∆Ω̄fm,ss
AB (r)−∆Ω̄fm,ss

A −∆Ω̄fm,ss
B .

[16]

Eqs. 14 and 16 exactly relate the desired effective potentials
in each cycle to the free energy differences on the right-hand
sides as given by the indirect parts of the green arrows in Fig. 1.
These can be accurately approximated by building on previous
LMF results by Remsing et al. (30), which considered directly
analogous processes involving a single fixed solute. As shown in
Materials and Methods, which discusses the additional compli-
cations that arise in the present case with two mobile solutes,
the resulting equations provide simple and generally accurate
LMF-based approximations for the indirect contributions like
∆Ω̄f,fm

AB (r) and ∆Ω̄fm,ss
AB (r) appearing in Eqs. 14 and 16.

With the approximations detailed in Material and Methods
made, Eq. 16 reduces to the following simple expression for
the effective solute–solute potential wss

AB(r) in the short solvent
system:

wss
AB(r) =wf

AB(r)

+
1

2

∫
dr′
(
ρqA(r′A) + ρq0,A(r′A)

)
QBv1(r ′B)

+
1

2

∫
dr′
(
ρqB(r′B) + ρq0,B(r′B)

)
QAv1(r ′A)

+
1

2

∫∫
dr′dr′′

(
ρqA(r′A)ρq0,B(r′′B)

+ ρqB(r′B)ρq0,A(r′′A)
)
v1(|r′′− r′|).

[17]

For the simple ion models used here the direct ion–ion inter-
action wf

AB(r)≡wf
ne,AB(r) +QAQBv(r) has a nonelectrostatic

component wf
ne,AB(r) given by the LJ ion–ion pair potential and

the electrostatic potential QAQBv(r) between the embedded ion
charges.

Determining the renormalized interaction in the SS model
using Eq. 17 requires only singlet solvent charge densities like ρqA
and ρq0,A induced by the hydration of isolated solutes in the full
and SS systems (denoted by the subscript 0), respectively. With
this in hand, we can use results from simulations or theory in
the simple SS model to provide accurate LMF-based approxima-
tions for the solute–solute potential of mean force driving ionic
association in the full system.

Eq. 17 can also be applied to uncharged (hydrophobic)
solutes by setting the ion charges to zero, and the last term,
accounting for long-ranged Coulomb interactions between sol-
vent molecules, would in principle still make a contribution to the
effective AB pair potential. However, it is generally very small
compared to the bare (nonelectrostatic) AB potential wf

ne,AB(r),
as illustrated below. Thus in most cases corrections from trun-
cation of solvent Coulomb interactions on uncharged solutes in
the SS model can be neglected and their PMF in the SS model
using the unmodified wf

ne,AB(r) accurately approximates that in
the full system.

Results
Salt Ions in Water. We first test our theory by studying thermo-
dynamic and structural properties of dilute aqueous solutions of
NaCl and CaCl2. Salt ions are widely present in chemical and
biological environments and are of vital importance to the bio-
chemical activities of cells. It has been shown that the collective
movement of water molecules plays an essential role in the disso-
ciation of ion pairs. Geissler et al. (40) and Ballard and Dellago
(41) showed that the dissociation of the Na+Cl− pair is driven
by the addition of water molecules into the first solvation shell of
the ions. Salanne et al. (42) showed that similar events happen
during the dissociation of Ca+2Cl−. The usual implicit solvent
model cannot capture the motion of solvent molecules and as
a result gives a poor ion–ion PMF, as shown by Ballard and
Dellago (41).

We obtain the cation–anion PMF by performing biased MD
simulation using umbrella sampling and the weighted histogram
analysis method (WHAM) (43–46). The force-field parameters
used for the ions and water are detailed in Materials and Meth-
ods. We note that a complete understanding of the hydration
structure of monatomic ions is still an active area of inves-
tigation, including subtleties associated with charge transfer,
polarization effects, and many-body interactions that can be
important even for Na+ and Cl− (47–51). The outcomes of
this ongoing research will be especially important with regard
to the refinement of empirical force fields. The choice of

1296 | www.pnas.org/cgi/doi/10.1073/pnas.1918981117 Gao et al.
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A B

C

Fig. 3. The ion–ion RDF. (A) The Na+Cl− RDF in the full system, the SS
system, and the SC system. (B) The Ca+2Cl− RDF in the full system, the
SS system, and the SC system. (C) The Ca+2Cl− RDF in a full system with
only one mobile Cl− ion in the simulation box with a uniform neutralizing
background (black) and with two mobile Cl− ions in the simulation box.

models for Ca+2 is a particularly active area of investiga-
tion (52). Recently, it has been suggested that the divalent
charge of Ca+2 might produce significant polarization effects
(53) and further insights from ab initio simulations might be
necessary (54).

Here we use highly studied models of Na+ and Cl−, as
well as a recent classical Ca+2 point charge model, which was
specifically designed to reproduce equilibrium ion solvation and
pairing properties (55). Our goal here is to assess the quantita-
tive accuracy of the LMF-based SS model for a given reason-
able choice of model potentials rather than trying to find the
“best” ion force fields. Our method of determining the renor-
malized potentials in the SS model should be applicable to
other choices of core potentials as well, since we average only
over uniformly slowly varying long-ranged components in its
derivation.

Fig. 3 compares the cation–anion radial distribution function
(RDF) in full water to that in the SS model, which has GT
ion–water and water–water electrostatic interactions with full LJ
interactions everywhere. The renormalized ion–ion electrostatic
interaction is determined by Eq. 17, which is shown in Materi-
als and Methods to yield a renormalized Coulomb interaction
screened by the full bulk dielectric constant ε going asymptot-
ically as QAQB/εr . Since this is still long ranged, effects from
periodic images in the SS simulation are taken into account
using Ewald sums, but this is needed only between the dilute ion
charges.

Fig. 3C shows that very similar results are found for the cation–
anion RDF for CaCl2 in full water using a neutral simulation
box with one cation and two mobile anions or a box with only
one mobile anion and a uniform neutralizing background. This
indicates that comparison of single cation–anion PMFs in dilute
Na+Cl− and Ca+2Cl− and related models is justified because
the single-ion PMFs are not significantly altered by neutraliza-
tion through another mobile ion or by a uniform background
charge density.

Also shown in Fig. 3 are results from a strictly short-ranged
“strong coupling” or “short Coulomb” (SC) model system where
all Coulomb interactions, including those between the ions,
are Gaussian truncated. The SC system accurately describes
the short-ranged physics involving packing and strong local
Coulomb interactions between neighboring ion cores and the

local hydrogen-bond configurations around them, but it is not
able to capture any effects of dielectric screening on the
ion–ion PMF.

As shown in Fig. 3, the full and SS systems give almost identi-
cal ion–ion RDFs for both NaCl and CaCl2 while the SC system
gives a significantly lower main ion–ion peak. Moreover, there is
a dramatic difference in the heights of the first contact ion-pair
(CIP) peak and the second solvent-separated ion-pair (SSIP)
peak between NaCl and CaCl2. There also exists experimental
evidence (56) supporting these differences.

Much of the dominant physics is short ranged and thus is quali-
tatively captured even by the SC model, but it completely ignores
the longer-ranged electrostatic interactions between the ions and
water in the full system. The renormalized ion–ion interactions
in the SS model account for the subtle but quantitatively impor-
tant corrections from long-ranged Coulomb interactions and the
very good agreement with the full system provides strong sup-
port for the accuracy of the general mapping framework depicted
in Fig. 1. The differences between the SS and SC systems
highlight the importance of dielectric response in determin-
ing ion–ion correlations, even at the small length scales typical
of SSIPs.

This striking difference between the Ca+2Cl− and Na+Cl−

RDFs must result from the higher charge of the Ca+2 ion, since
both cations have very similar LJ parameters. To verify this point
we simulated the association of Na+Q and Cl− in water, where
Na+Q is an artificial ion that has the same LJ core as Na+

but carries a charge +Q. We gradually increased Q from 1 to
2 in a system with a uniform neutralizing background charge. As
shown in Fig. 4A, the CIP peak initially increases, as would be
expected physically from the stronger short-ranged cation–anion
attraction, and reaches a maximum at Q≈ 1.5. The CIP peak
then drops rapidly with increasing Q. At Q = 2, the CIP peak
is much lower than the SSIP peak, just as is found for Ca+2Cl−

association.
This behavior arises from a competition between the increas-

ing contact cation–anion attraction and the collective changes of
the water structure and hydrogen-bond configurations around
the ions driven by the charging process. To get a better under-
standing of the mechanism, we monitored the number of water
molecules in the first solvation shell of Na+Q when Na+Q and
Cl− cores are in contact. As shown in Fig. 4B, the number of
water molecules around Na+Q remains essentially constant until
Q≈ 1.8, after which it rapidly increases. This phase-transition–
like behavior strongly suggests that the drop of the CIP peak
height is driven by the addition of another water molecule into

BA

Fig. 4. The ion–ion RDF with variable cation charge Q and the coordination
number of water in the first solvation shell. (A) The Na+QCl− RDF with Q
ranging from 1 to 2. (B) The number of water molecules in the first solvation
shell of Na+Q when Q is increased from 1 to 2. The Na+Q and Cl− ions are
kept in contact during the charging process. Blue circles denote the results
of the full system. Red squares denote the results of the SS and SC systems.
(The SS and SC systems give the same result since they have the same ion–
water interaction.)
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the first solvation shell of the cation, consistent with previous
work examining the role of hydration shell fluctuations in ionic
assembly (42, 54, 57).

The complicated interplay between strong short-ranged
Coulomb and LJ core forces generating hydrogen bonds and
local contributions to ion–water and ion–ion association and
the long-ranged Coulomb interactions that determine dielec-
tric screening between distant charges is again quantitatively
captured in the SS model. A proper description of this bal-
ance, and therefore ionic correlations, is crucial for even qual-
itative modeling of more complex materials and biophysical
systems.

Indeed, divalent metal ions are found to specifically adsorb to
fatty acid interfaces relevant to atmospheric chemistry (58), and
ionic charge densities ultimately dictate fundamental reactions
that underlie complex kinetic processes in an array of settings
(59, 60). Moreover, it has been found that the interactions of
divalent ions with biomolecules can significantly impact confor-
mational preferences of the latter in a manner that depends
sensitively on ion–biomolecule interactions (61–64). We expect
that the SS model can be extended to model such complex sys-
tems without the need for explicit representation of long-ranged
electrostatics.

Nonpolar and Hydrophobic Solutes in Water. We next examine
aqueous association of nonpolar solutes of varying sizes, which
can generate a length-scale–dependent transition in the nature
of the local solute–water interface (65–67). Small solutes are
modeled by argon, whose core diameter is about 0.34 nm, small
enough that the local hydrogen-bond network around it remains
essentially intact (although with reduced fluctuations relative to
bulk). A physically suggestive discussion of some of the relevant
physics in this regime is given in ref. 68.

Large apolar solutes are modeled as C60 fullerenes, each
described using the single-site coarse-grained model of Girifalco
(69, 70), which has a core diameter of ∼1 nm. The specific force
fields used are detailed in Materials and Methods.

The PMF between the two fullerene solutes is computed
by performing biased simulations using umbrella sampling in
conjunction with WHAM (43–46). The fullerene cage is large
enough to significantly disrupt and break the hydrogen-bond
network near its surface, creating a soft interface with large den-
sity fluctuations. However, fullerene–water LJ attractions are
strong enough that the average water density near the cage is
significantly higher than in the bulk; i.e., the surface is wet by
water.

For the small Ar solutes, the PMF shown in Fig. 5A exhibits
a global minimum at solute–solute contact and a local mini-
mum corresponding to solvent-separated solutes, with a barrier
separating the two minima physically arising from the removal
of a water molecule from the region between the solutes.
Because the hydrogen-bond network remains intact around such
small solutes, this necessarily involves breakage of a hydro-
gen bond. Since the association of two small solutes is dom-
inated by changes in the local hydrogen-bond network, the
PMFs are virtually unaffected by Gaussian truncation of solvent–
solvent electrostatic interactions, consistent with previous
work (71, 72).

Long-ranged electrostatics also have only a small impact on
the association free energies of large fullerene solutes, as shown
in the upper part of Fig. 5B. However, the very strong van der
Waals (VDW) solute–solute attractions play a significant role in
this solute size regime, competing with hydrophobic interactions,
and the solvent-mediated part of the PMF is weakly repulsive at
small separations.

To provide a more stringent test of LMF theory for very
strong hydrophobic interactions we also considered the asso-
ciation of repulsive-core Weeks–Chandler–Andersen (WCA)

A B

C

Fig. 5. (A) The solvent-mediated part of PMF between argon in full water
(black solid line), between argon in GT water (blue square), between
WCA argon in full water (purple dashed line), and between WCA argon
in GT water (red circle). (B) The solvent-mediated part of PMF between
fullerenes in full water (black solid line), between fullerenes in GT water
(blue square), between WCA fullerenes in full water (purple dashed line),
and between WCA fullerenes in GT water (red circle). (C) The radial dis-
tribution function between the solute and oxygen site of water in full
water (black solid line), GT water (blue dashed line), and GT2 water
(magenta dashed line). The solute is a harshly repulsive-core solute with
2 nm diameter.

versions of both the Ar and fullerene solutes, where both
solute–water and solute–solute VDW attractions are turned
off. Understanding the changes in hydrophobic interactions
resulting from VDW solute–solvent and solvent–solvent attrac-
tions has been the focus of much recent work (72–75).
As shown in Fig. 5A, the increase in the solvent-mediated
hydrophobic attraction between the small purely repulsive
Ar solutes is quantitatively captured by the GT or SC sys-
tem, consistent with minimal corrections from long-ranged
electrostatics.

However, when all VDW interactions are truncated for
the large fullerenes, the purely repulsive fullerene cores
experience an exceptionally strong hydrophobic attraction of
order 12 kBT at contact, as shown in the lower part of
Fig. 5B. Simulations using unmodified GT water in the
SS model qualitatively capture almost all of the dramatic
changes that truncation of the VDW interactions induce
in the PMF between large full and repulsive-core fullerene
solutes. However, small quantitative differences on the order
of the thermal energy between the full and GT systems
can be seen.

Fig. 5B shows that the hydrophobic interaction between
repulsive-core fullerenes is slightly stronger in GT water than
in full water. Additionally, our earlier work has shown that the
solvation free energy of a single large hydrophobic solute is
slightly more favorable in GT water than in full water (71). These
observations are consistent with easier drying in GT water than
in the full water, resulting in increased hydrophobicity of the
solutes (71).

A simple empirical way to correct the increased drying
for strongly hydrophobic solutes in the GT model while
still truncating Coulomb interactions is to slightly reduce
the water–water LJ attractions, whose unbalanced effects are
known to be the dominant force leading to drying (71, 76,
77). This modified solvent model is designated as the GT2
model. It contains the same Gaussian-truncated Coulomb
interactions as in the GT model and modified solvent LJ

1298 | www.pnas.org/cgi/doi/10.1073/pnas.1918981117 Gao et al.
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interactions uξ(r) whose attractive forces are scaled by a
coupling parameter ξ:

uξ(r) = u0(r) + ξu1(r). [18]

The potential uξ(r) is continuous for all values of ξ, with
ξ= 1 giving the full oxygen LJ potential in the GT model
and ξ= 0 the repulsive-core LJ potential, giving the Gaussian-
truncated repulsive-core (GTRC) water model discussed in
refs. 71 and 77.

Bulk hydrogen-bond patterns and fluctuations in both GT and
GT–repulsive-core water, controlled by the strong short-ranged
core forces, accurately reproduce those of full bulk water (71,
77), and these should continue to be accurate for any intermedi-
ate ξ value in GT2 water. We determined ξ for the GT2 model
by requiring that the (oxygen) density distribution of GT2 water
around a large, hard-sphere solute match that in full extended
simple point charge model (SPC/E) water. Our goal here is
to refine the description of hydrophobicity for large repulsive
solutes in GT2 water, rather than to try to improve its predictions
for general thermodynamic properties of bulk water. At 300 K
and 1 atm, a slight reduction in the strength of water–water LJ
attractions to ξ= 0.95 gives an excellent approximation to the
full water density profile (Fig. 5C).

With the slight overdrying around a large hydrophobic solute
corrected by the reduced ξ in the GT2 model, the truncated
(WCAC60) fullerene–fullerene PMF in the full system is quan-
titatively recovered in simulations using GT2 water, with no
explicit corrections from long-ranged Coulomb tails, as shown in
Fig. 5B. We also verified that the solvation free energy of a single
large hard-sphere solute is quantitatively reproduced in the GT2
model as well. The solvation free energy (kJ/mol) values of a 1-
nm diameter hard sphere in SPC/E, GT, and GT2 water at 300 K
and 1 atm are 480.3, 457.1, and 479.9, respectively.

The fact that fixing the drying around a single large repulsive
solute simultaneously fixes its solvation free energy and the pair
PMF can be well understood by LMF theory, given that the GT2
and SPC/E models share the same short-ranged core potentials
and differ only in their long-ranged interactions. The essentially
identical nonuniform density profiles, according to LMF theory,
imply that the net unbalanced force coming from long-ranged
interactions should also be the same in these two models. LMF
solvation theory (30) and the discussion here in Materials and
Methods have formulated the long-ranged contribution to the
solvation and association free energies in terms of the nonuni-
form density profiles. With these matched in the GT2 model, we
would expect that solvation and association free energies are also
well reproduced.

Discussion
LMF theory has been applied successfully in diverse scenar-
ios, many of which are beyond the scope of conventional
mean-field treatments. It has been shown that LMF theory
can very accurately describe drying near a hydrophobic solute
in water, overcharging near a highly charged colloid, dielec-
tric screening of a charged ion, and the induced water struc-
ture near hydrophobic or charged walls. A recent extension
of LMF theory, the symmetry-preserving mean-field theory,
has been proved to be able to capture both the equilibrium
and dynamical effects of electrostatics at interfaces with high
symmetry (78–81).

Most relevant to the present work is the recent extension of
LMF theory to determine contributions from the long-ranged
Coulomb interactions to free energies of solvation and alchem-
ical transformations of a single solute in water, where the
solute–solvent interaction in the mimic system was represented
by an effective external field (30, 82). Very accurate estimates
of solvation free energies were obtained from a simple analytic

expression that requires only knowledge of the effective field and
the induced nonuniform singlet charge density.

In this work, we have further extended LMF theory to con-
struct a short solvent model that yields very accurate association
energies for ionic and hydrophobic solutes in dilute aque-
ous solutions. This SS model utilizes a Gaussian truncation of
solvent–solvent electrostatics and renormalizes the solute–solute
electrostatic interactions according to an LMF theory-based
framework, thus avoiding possible artifacts and computational
expense arising from standard treatments of long-ranged sol-
vent interactions in periodic systems. We have demonstrated
the exceptional accuracy of this approach in describing the
association of ionic and hydrophobic solutes in dilute aqueous
solutions.

Moreover, the class of GT water models used in the SS system,
as well as other short water models mentioned in the Intro-
duction, can also be systematically corrected within the LMF
framework to describe both solute–solvent and solute–solute
correlations using the full mimic system as depicted in Fig. 1,
Middle.

To implement the SS model in the context of biomolecular
assembly, the simplest approach would be to apply renormalized
interactions between each pair of atoms on the biomolecules.
However, complications may arise from bonding and geo-
metrical complexities of biomolecules in different configura-
tions (83). For example, most biomolecules possesses both
hydrophobic and hydrophilic regions, and extended hydropho-
bic regions from conformational changes induce very differ-
ent local solvent structures and fluctuations than seen near
hydrophilic regions. As a consequence one needs to take into
account the heterogeneous solvation states of extended regions
on the biomolecules when trying to determine the renormal-
ized interactions. LMF theory gives a natural framework to
address such issues (84) and we are actively working on its
implementation in a generalized SS model that we believe
can accurately capture the association thermodynamics of
biomolecules.

Materials and Methods
Force Field Used in Simulation. Each ion is modeled as a nonpolarizable
single-site LJ particle with a point charge at its center. The LJ parame-
ters for Na+ and Cl− are those listed by Koneshan et al. (52). The Ca2+

parameters are those of Mamatkulov, Fyta, and Netz (55). The ion–ion
and ion–water cross-interaction parameters are determined by Lorentz–
Berthelot mixing rules. Table 1 summarizes the parameters used for the ions,
Ar, and water. To model fullerene, we adopt the coarse-grained model of
Girifalco (69, 70).

Magnitude of the Last Term of Eq. 17 for Apolar Solutes. The last term of
Eq. 17 has been calculated for various apolar solutes, and its magnitude
is found to be very small: It is smaller than 0.007 kBT when the solute is
argon, it is smaller than 0.01 kBT when the solute is repulsive-core argon, it
is smaller than 0.05 kBT when the solute is fullerene, and it is smaller than
0.05 kBT when the solute is repulsive-core fullerene. Results are obtained at
300 K and 1 atm, with solvent being SPC/E water.

Adapting Remsing et al. (30) Results to Current Work. Remsing et al. (30)
discussed LMF predictions for the solvation free energy of a single ionic

Table 1. Force-field parameters for ions, water, and argon

Atom type σ(nm) ε(kJ/mol) Charge

Na+ 0.2586 0.4184 1
Ca+2 0.241 0.94 2
Cl− 0.4404 0.4184 −1
OW 0.3166 0.6502 −0.8476
HW 0 0 0.4238
Ar 0.34 0.9977 0

Gao et al. PNAS | January 21, 2020 | vol. 117 | no. 3 | 1299
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solute A fixed at the origin in solvent W. We can immediately adapt
many of their results to the system of interest here by considering the
electrostatic potential at r′ generated by Coulomb interactions from two
solutes of types A and B fixed at positions 0 and r as shown in Fig. 2.
In the full system, using standard ion models with point charges QA and
QB embedded at the centers of spherically symmetric cores, this has the
simple form

V f
AB(r′|0, r)≡VAB(r′|0, r) = QAv(r′A) + QBv(r′B). [19]

Using Eq. 4 this has short- and long-ranged components

VAB(r′|0, r) =V0,AB(r′|0, r) +V1,AB(r′|0, r). [20]

The analogous renormalized potential in the FM system is

V fm
AB (r′|0, r)≡VR,AB(r′|0, r) =V0,AB(r′|0, r) +VR1,AB(r′|0, r). [21]

Here we use the subscript R to denote the renormalized solute–solvent inter-
actions in the FM system, with a long-ranged component VR1 chosen to
match the induced solvent charge density in the full system, as was done
in Remsing et al. (30) for a single isolated solute. In the simpler SS sys-
tem, the solute–solvent interaction, by definition, has only the short-ranged
component:

V ss
AB(r′|0, r) =V0,AB(r′|0, r). [22]

VR,AB in Eq. 21 is accurately given by a natural generalization of the single-
solute Coulomb LMF equation in equation 7 of Remsing et al. (30), which
can be written as

VR,AB(r′|0, r) =VAB(r′|0, r) +

∫
dr′′ρq

AB(r′′|0, r)v1(|r′− r′′|), [23]

where, by construction, we have assumed that the induced charge densities
in the full and FM systems are equal, ρq

R,AB = ρq
AB, when the self-consistent

Eq. 23 is satisfied.
Equation 12 of Remsing et al. (30) shows that LMF theory can give very

accurate results for the contribution of long-ranged Coulomb interactions
to the solvation free energy of a single ionic solute from a simple analytic
formula that requires knowledge only of the renormalized potential and
the induced charge density. The LMF prediction for the solvent-mediated
(or indirect) component of the solvation free energy change, ∆Ω̄f,fm

AB (r),
for the FM system appearing in Eqs. 14 and 16, is directly analogous to
the single-solute result given in equation 12 of Remsing et al. (30) and
is given by

∆Ω̄
f,fm
AB (r) =−

1

2

∫
dr′ρq

AB(r′|0, r) ·
(
VR,AB(r′|0, r)−VAB(r′|0, r)

)
. [24]

Note that this expression provides an estimate for the indirect free energy
change only, because VR,AB and VAB do not include direct solute–solute pair
interaction energies.

To determine the analog of Eq. 24 for the SS system, we note that the SS
and FM systems have the same Gaussian-truncated solvent–solvent Coulomb
interactions. The free energy changes given by the lower set of green arrows
in Fig. 1 can then be readily determined by turning on the LMF potential
VR1,AB in Eq. 21 with a linear coupling parameter λ. Using standard coupling
parameter techniques, the exact expression for ∆Ω̄fm,ss

AB (r) is

∆Ω̄
fm,ss
AB (r) =

∫ 1

0
dλ
∫

dr′ρq
λ,AB(r′|0, r)VR1,AB(r′|0, r), [25]

where ρq
λ,AB(r′ | 0, r) is the induced charge density in state λ with potential

λVR1,AB(r′ | 0, r).
As discussed in SI appendix of Remsing et al. (30) leading to equation

S16, because of the slowly varying nature of VR1,AB, the induced density
should obey Gaussian statistics to a good approximation, which means that
ρq
λ,AB(r′ | 0, r) in Eq. 25 can be accurately approximated by linear inter-

polation between its values at λ= 0 and λ= 1 (85). Thus Eq. 25 can be
reduced to

∆Ω̄
fm,ss
AB (r)≈

1

2

∫
dr′
(
ρ

q
AB(r′|0, r) + ρ

q
0,AB(r′|0, r)

)
VR1,AB(r′|0, r). [26]

Inserting results from Eqs. 24 and 26 into Eq. 16, the approximate expression
for wss

AB(r) is then given by

wss
AB(r)≈wf

AB(r)

+
1

2

∫
dr′ρq

AB(r′|0, r)V1,AB(r′|0, r)

+
1

2

∫
dr′ρq

0,AB(r′|0, r)VR1,AB(r′|0, r)

−
1

2

∫
dr′ρq

A(r′A)V1,A(r′A)

−
1

2

∫
dr′ρq

0,A(r′A)VR1,A(r′A)

−
1

2

∫
dr′ρq

B(r′B)V1,B(r′B)

−
1

2

∫
dr′ρq

0,B(r′B)VR1,B(r′B). [27]

However, even after the LMF and Gaussian approximations have been made,
some terms in Eq. 27 still require averages over three-body correlation
functions. In general, accurate point-wise approximations for such three-
body functions are usually hard to get either analytically or numerically.
But previous work (72) has shown that integrals over such functions when
multiplied by slowly varying long-ranged interaction terms like V1,AB and
VR1,AB can often be accurately approximated by assuming the charge den-
sity perturbations from each solute add independently. Thus we can use the
approximation

ρ
q
AB(r′|0, r)≈ ρq

A(r′A) + ρ
q
B(r′B), [28]

in expressions for the averages in Eq. 27. As shown below, this uncorre-
lated density response preserves the asymptotic behavior of the solute–
solute PMF, as would be expected, and in ref. 72 it gave surprisingly
accurate results at much smaller r, provided that the solute cores do
not overlap.

After making this additional approximation, many terms in Eq. 27 cancel.
The final simple result, involving only solute–solvent correlation functions
for isolated solutes, is given in Eq. 17.

Asymptotic Behavior of the Effective Ion–Ion Interaction of the Short Sol-
vent Model. To understand the asymptotic behavior of the effective ion–ion
interaction wss

AB(r), it is useful to take a Fourier transform of Eq. 17, which
gives

wss
AB(k) = QAQBv̂(k)

+
1

2

(
ρ̂

q
A(k) + ρ̂

q
0,A(k)

)
QBv̂1(k)

+
1

2

(
ρ̂

q
B(k) + ρ̂

q
0,B(k)

)
QAv̂1(k)

+
1

2

(
ρ̂

q
A(k)ρ̂q

0,B(k) + ρ̂
q
B(k)ρ̂q

0,A(k)
)

v̂1(k).

[29]

Here v̂(k) is the Fourier transform of v(r) = 1/r,

v̂(k) =
4π

k2
, [30]

and v̂1(k) is the Fourier transform of v1(r) = erf(r/σ)/r,

v̂1(k) =
4π

k2
e−k2σ2/4

=
4π

k2
+O(1). [31]

ρ̂q
A(k) is the Fourier transform of ρq

A(r). Its expansion around k = 0 is

ρ̂
q
A(k) =−

(
1−

1

ε

)
QA +O(k2), [32]
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where ε is the dielectric constant of the full water solvent, and (1− 1/ε)QA

is the total water charge induced to screen the ion charge QA. Similar results
hold for ρ̂q

B(k).
In the short solvent model (and the Gaussian-truncated model) the elec-

trostatic interaction between ions and water is truncated on a microscopic
length scale. Thus the effective total charge of the ion and the associated
screening charge of the solvent are also 0, which means that the expansion
of ρ̂q

0,A(k) and ρ̂q
0,B(k) has no zeroth-order term:

ρ̂
q
0,A(k) = 0 +O(k2). [33]

Substituting Eqs. 30–33 into Eq. 29 gives

wss
AB(k) =

1

ε
QAQB

4π

k2
+O(1), [34]

and taking the inverse transform of Eq. 34 to go back to r space gives the
asymptotic behavior of wss

AB(r):

wss
AB(r)∼

1

ε
QAQB

1

r
when r→∞. [35]

This result is consistent with dielectric continuum theory.
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